The p-Laplacian spectral radius of weighted trees with a degree sequence and a weight set

نویسندگان

  • Guang-Jun Zhang
  • Xiao-Dong Zhang
  • GUANG-JUN ZHANG
  • XIAO-DONG ZHANG
چکیده

In this paper, some properties of the discrete p-Laplacian spectral radius of weighted trees have been investigated. These results are used to characterize all extremal weighted trees with the largest p-Laplacian spectral radius among all weighted trees with a given degree sequence and a positive weight set. Moreover, a majorization theorem with two tree degree sequences is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela the P -laplacian Spectral Radius of Weighted Trees with a Degree Sequence and a Weight Set∗

In this paper, some properties of the discrete p-Laplacian spectral radius of weighted trees have been investigated. These results are used to characterize all extremal weighted trees with the largest p-Laplacian spectral radius among all weighted trees with a given degree sequence and a positive weight set. Moreover, a majorization theorem with two tree degree sequences is presented.

متن کامل

The Laplacian spectral radii of trees with degree sequences

In this paper, we characterize all extremal trees with the largest Laplacian spectral radius in the set of all trees with a given degree sequence. Consequently, we also obtain all extremal trees with the largest Laplacian spectral radius in the sets of all trees of order n with the largest degree, the leaves number and the matching number, respectively. © 2007 Elsevier B.V. All rights reserved....

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

More inequalities for Laplacian indices by way of majorization

The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015